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ABSTRACT

It is often difficult in computer graphics applications to understand
spatird relationships betsveenobjects in a3D sceneor effect changes
to those objects without specialized visualization and manipulation
techniques. We present a set of three-dimensional tools (widgets)
called “shadows” that not only provide valuable perceptual cues
about the spatial relationships between objects, but rdso provide
a direct manipulation interface to constrained transformation tech-
niques. These shadow widgets provide two advancesover previous
techniques. First they provide high correlation between their own
geometric feedback and their effects on the objects they control.

Second, unlike some other 3D widgets, they do not obscure the
objects they control.
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1 Introduction

A wide variety of techniques for visualizing and manipulating ob-
jects have been implemented in interactive 3D graphics applications

for modeling, animation, simulation and visualization. In this pa-
per, we present a set of widgetsl called shadows that we have used
both to view and to interact with objects in our 3D application en-
vironment. These widgets are similar to shadows implemented in
previous systems in displaying information about a scene’s geomet-
ric composition. However, the shadow widgets described here are
interactive extensions of this idea — they allow users to translate,
rotate and scale objects in a constrained manner. We discuss the
details of our implementation of these shadow widgets and some of

the problems associated with them.

2 Previous Work

2.1 Interaction Techniques
Almost all techniques for visualizing and manipulating objects in 3D
computer graphics applications have been developed for hardware

1A widget is an interaction technique that encapsulates geometry
and behavior and is used to visualize and/or control application
objects.
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configurations that include 2D input devices such as mice or tablets
and conventional CRT displays (i.e., non-stereo and non-immersive

displays). It has thus been necessary to give the user tools to
map both 2D user input to 3D object manipulation and 3D spatial
relationships to 2D displays. ‘llvo-dimensional widgets, such as

sliders or virtual dials, can be used to apply changes to an object
(translation, color, etc.), but these widgets generally are external
to the 3D scene. Thus, there is often a large cognitive “distance”

between a user’s intentions and an application’s tools; if this dktance
is too great the kinesthetic correspondence between user actions
and results will be poor and the user’s sense of engagement with the
application is lessened [1 1].

Direct-manipulation techniques, or widgets, that significantly
reduce the cognitive load on a user in certain interaction tasks have
been implemented in many systems [5] [10] [15] [16] [22]. These
widgets exist within a 3D scene along with the very objects they

affec~ thus increasing a user’s feeling of performing actions directly

upon objects and decreasing the distance between goals and actions.
However, none of these solutions are perfect for all interaction tasks
[4] [14].

Adding geometry to a widget sometimes helps communicate the

widget’s degrees of freedom and intended use, thus allowing a user
to more accurately choose the appropriate tool for a task and predict
that tool’s effects. However, geometric 3D widgets can still distract
a user’s attention away from or even obscure the object of interest
[21]. Alleviating these problems by rendering widgets in wireframe
or disclosing their components selectively [22], can make it more
difficult to understand the function of a widget or its relation to a

3D object.

2.2 Visualization Techniques
The 2D image produced by herdwere Z-buffer renderers (the most

common style of representation) is often hard to visualize, and a
great deal of viewpoint or object manipulation is required to form
a mental model of a scene. A scene’s complexity increases when
a user needs to visualize different attributes of a model simultane-
ously, such as spatial or logical relationships between its parts, or
simply visual properties like surface color and texture. Although
these qualitatively different ways to look at a model are often treated
as different modules of the same application (or even different ap-
plications), they are all related through the underlying model itself.

Thus, many commercial and research applications support multiple
window displays to visurdize simultaneously different parts, views,
or representations of a model. While this solution does present a
great deal of information at once, it is the user who must combme
the separate images into a single, coherent understanding of the
modeL This is an often difficult task [6]; consider combining three
adjacent orthographic views and one perspective view, a standard
multi-window configuration, to form a mental model of a complex
object. Moreover, when the user wishes to interact with the model,
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she must choose the one view, or worse the set of views, most
appropriate for the task.

One technique sometimes used to visualize geometric relation-
ships between parts of a 3D model is an orthogonal projection of

objects onto a floor or wall plane. Such a shadow, so long as it
does not lie along an axis similar to the viewing direction, provides
important information about the scene. Unfortunately, most imple-
mentations of this idea are non-interactive (i.e., users cannotinteract
directly with the shadows themselves); the shadows are exclusively
visualization aids.

The GROPE-II system, developed at the University of North

Carolina at Chapel HiU in the mid-1970s [12], provided a number

of depth cues, including shadows, to help users position and orient
a robot’s arm and hand in a real environment by interacting with a
simulated representation on a vector display. User studies conducted
by the author revealed that shadows were the most informative and
popular cue. The bolio system from MIT [23], and Jack, by PhiUips

and Badler [15], also projected modeling objects onto the walls
of the scene to aid visualization. Projections of data points in 3D
volumes have also been used in scientific visualization applications
to help users understand their data [9].

Wanger et al. recently performed user studies to determine which
of a number of depth cues, including shadows, most effectively
displayed inter-object spatial relationships to a user viewing a scene
via a 2D display. Shadows ranked high in these results [25] [26].

In none of these systems or studies are users allowed to manip-
ulate the shadows themselves — the projections are useful visual-
ization aids, but are non-interactive. However, in a recent system,
specular highlights and shadows derived from light sources are used

to position lights in a 3D scene [18]. In this system, light sources
are inferred from information provided by user-specified highlights
and shadows.

3 Using Shadows as Widgets

Projections of objects (or shadows) have been proven to be valuable
visualization tools. We have not only used them extensively for this
rmmose, but have also allowed users to interact with shadows to
~pp~y transformations to objects.

.Iq 111111111

Object

Figure 1: By dragging the shadow of the cube object the cube itself
is translated by the same amount in a plane parallel to the shadow

plane.

3.1 What is a Shadow Widget?
Our interactive shadow widget is a projection of a 3D object onto a
plane (usually aligned with the 3D coordinate system of the world
and located near the 3D object). It is related to the 3D object itself
via a network of two-way dependencies that “connect” the 3D object

and its projection so that they translate, rotate and scale with each
other. A user can transform the 3D object freely in three-space
using any of a variety of direct-manipulation techniques and watch

its shadow move accordingly. Conversely, dragging an object’s
shadow moves the 3D object (Figure 1). This shadow is constrained
trI lie in a single plane, and transformation of the shadow widget
affects the 3D object in that same plane. Translation and scale
occur in the projection plane and rotation occurs about the normal
to the projection plane. Because more than one shadow widget
can be activated at a time for the same 3D object shadows of a
single object can be placed on each of three separate orthogonal

planes (Figures 2 and 3). Also, each object may have its own

Figure 2 A model of an ai@ane with detached landing gear is dis-
played in a stage. Opaque shadows of the model parts are projected
onto the floor plane and both walls.

Figure 3: This schematic labels the elements of Figure 2.

set of corresponding shadow widgets, although to avoid clutter in
a multiple-object scene, we typically use shadows only for objects
being manipulated.

3.2 Different Types of Shadows
The geometry of a shadow widget is usually directly related to the
geometry of the 3D object it comes from. Since shadow widgets
are fist-class objects in our system, their attributes can be altered
to produce different effects. For instance, we have used different
rendering styles, including opaque black silhouettes, wireframe, and

fully rendered copies of the 3D objec~ to produce shadow widgets.
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We can also alter the geometry of the shadow in situations where it
is less important than other properties such as position or color.

The opaque version of the shadow widget most closely resem-
bles ourreal-world experience of shadows produced by distant light

sources. The silhouette appears as an accurate geometric profile of
the object devoid of any surface features. In a scene containing a

number of differently shaped objects and thek shadows, users can
generally associate an object with its shadow and use this knowledge
to understand spatial relationships between objects in the scene.
However, difficulties can arise with certain object-shadow relation-
ships when, for example, the projections of two very differently

shaped objects are similar from one point of view (say, a sphere and
an hourglass) [25]. In these cases, projecting shadows simultrme-

ously onto a number of orthogonal planes can help disambiguate
conflicts.

Wireframe shadows are similar to the orthogonal views com-

monly used in industrial design or architecturrd applications. These

projections allow users to “see through” objects and thus perceive
spatial relationships among them even when the objects intersect
one other (Figure 4). Wireframe views can be used to align surface
and interior features of objects precisely with one another.

Figure 4 The shadow objects may be rendered in wire-frame to
display relationships between interpenetrating objects.

Fully rendered shadows resemble real-world mirrors in that they
display the surface properties of the actual 3D object (color, shading,
texture, etc.). This type of shadow is useful when more visual in-

formation about the object of interest is required than either opaque
or wireframe shadows can provide.

Shadows may also be created with arbitrary geometry. This
style of shadow widget still reflects attributes of the primary 3D
object but need not be a geometrically exact projection. In some
cases, it maybe useful to substitute an alternate geometric shape for
the projection of the object’s actual geometry. If, for instance, the
scene being visualized contains a large number of relatively complex
objects, geometrically accurate shadows may be either unnecessary
or prohibitively expensive to render, and a simple bounding circle or

square may suffice to depict the spatial relationships. Alternatively,
textual names of objects may be projected into the shadow plane,
providing labels for the model that do not themselves obscure the
geometry of the model.

These different styles of shadow widgets can be used simultane-
ously. For example, a fully rendered shadow of an object can be

put next to wireframe shadows of surrounding objects to stress the

importance of one object in the scene over others. In addition, the
shadows of selected objects can be rendered differently from those

of unselected objects.

3.3 Use of Shadows
A single shadow widget by itself is useful both as a spatial cue
and as a tool to constrain transformations to a plane. In practice,
however, we use multiple shadows setup in a stage format. In thii
configuration, the 3D object is enclosed in a larger cube. Shadow

widgets are projected onto the interior walls of this cube, but are
rendered only for walls that lie behind the object of interest with
respect to the viewpoint. This stage metaphor has been @plemented

in a number of previous systems to give users some sense of a
workspace in an otherwise boundless volume [8] [15].

Displaying a number of shadow widgets simultaneously in a
stage-like configuration like this has two important implications.

Firss users are easily able to transform objects with planar con-
straints using controls that are readily available and visible at all
times. Other solutions to this specific interaction task include wid-
gets known as object handles [5] [10] [15] [17] [22]. These handles
are useful tools in many situations, but their geometry can some-
times obscure the object of interest. This can make it difficult for
users to seethe changes they have made to an object. For example,

aligning two objects with one another can be very difficult if the

tool being used conceals the interesting features of the objects them-

selves. Shadow widgek may be used in such si~ations to remove

the obscuring geometry of the tool from the object being manip-
ulated without completely breaking the visurd connection between
tool and object.

Second, using shadows on a stage provides visualization and
interaction functionality comprwable to multiple-window solutions,
including interaction with 3D objects from three orthogonrd and one
perspective view, with the advantage that the views are integrated
in a single 3D view. In this view, the position and orientation of
the shadows are always consistent with the acturd 3D objects, since

all tie views of the same underlying model. We have found in this
setup that even though the projected views are generally seen at an
angle, we are still able to use them effectively as orthogonrd views.

Other perceptual advantages to using shadow widgets for both
manipulation and visualization derive from the fact that the shadow
widgets rely on a concrete visual metaphor (i.e., their relation to
real-world phenomena) to convey their function to a use~ rerd-

world shadows move along the surfaces of objects; shadow widgets,
similarly, move in a plane. The shadow widgets do no~ however,
adequately reveal their interactive functionality — users must be

told that they can move the shadow directly and that doing so moves
the related 3D object. User studies are needed to determine just how
much better or worse these widgets are that others for interaction
with objects.

This method of object manipulation and visualization is obvi-
ously not desirable for all interactive tasks, but we have found it
useful for some. Shadows provide an alternate means for viewing
and interacting with a scene from different points of view that is

perceptually more unified than multiple-window solutions. In any
graphics application, we believe that the user should have available
a variety of tools, and should be able to switch between manipula-

tion and visualization tools easily, choosing the one best fitting the
specific task at hand. Shadows are one such tool.

3.4 Extending the Use of Shadows
The interactive shadow widge~ when displayed as a fully rendered
objec~ has all the surface properties of the 3D object from which
it is derived. We call this version of the shadow widget a “mirror”
widget. When the widget is placed behind a 3D object (with respect
to the user’s point of view), it is flipped around the projection axis,
so that the user can see the back sides of the object (Figure 5).
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Like shadows, these “mirrors” do not act at all like their real-world
analogues — a shadow widget is not computed from a light source,
and these “mirrors” are not view-dependent.

size, and translating it by some amount to offset it from the primary
object (Figure 6). Finally, a two-way constraint is defined between
the transformation matrices of the object and its shadow to assure
that changes to either object affects the other.

Figure 5: Fully-rendered shadows are used to display surfaces of
objects that are not dwectly visible from the user’s point of view.

Note that in the mirror view, one can see that the landing gear is

aligned with the landing gear bay.

We have also used this specific version of the shadow widget
to perform object-to-object snapping [1] [2], a popular technique
for aligning the surfaces of two objects with each other. In our

implementation of this technique, we can snap together only points
on the visible surfaces of objects. Frequently, one or more of the
surfaces trI be snapped is not visible from the user’s point of view,
and either the viewpoint or the model must be altered to reveal
it. If a user is performing a number of similar snapping tasks in
sequence, she must interleave snapping operations with viewpoint

modification operations. This constant interleaving of tasks can be
distracting and time-consuming.

We can take advantage of the additional visual information

provided by the fully rendered shadow widgets when performing
object-to-object snapping between surfaces that are not simultane-
ously visible. Consider a scene in which one surface to be snapped
is directly visible to the user, and the other is not. An appropriately

placed’’mirror” widget will reveal (in “reflection”) the invisible sur-
face, and thus increase the number of visible surfaces in the scene.
Clicking on the “mirror” image of the previously invisible surface
records the correspondbig point on the actual surface of the 3D ob-
ject. In a scene with more than one fully-rendered shadow, snapping
operations can occur between any two “mirror” images, or between
any “mirror” and object. This method works best for objects that
are completely convex. Objects that have self-obscuring regions
may not benefit fully from the use of full-rendered shadow widgets.

4 Implementation Details and Problems

We have used our animation, modeling and simulation system,
called UGA [27], to implement the shadow widgets described here.
This system uses the same scripting language to describe the ge-
ometry and behavior of widgets and application objects, and treats
both equally as tirst-class objects. Shadow widgets are created by
tirst copying the geometry of a 3D object then scaling the copy
along the axis perpendicular to the projection plane to a very thin

Projection

Figure 6: The airplane model (here in 2D) is copied, scaled down
along the projection axis, and colored black to create an opaque
shadow. Notice how the shadow object retains some thickness,
and is offset from the floor plane. The scale of the shadow and its
dwtance from the floor plane are exaggerated in this figure.

We do not scale the copies to zero along the projection axis

because of our pick-correlation method. Objects are picked by

casting a ray into the scene from the viewpoint through the mouse
cursor position. This ray is intersected with each object in the scene
to determine which object was clicked on. The ray intersection

test for each object is performed in object space, which requires
inversion of the object’s transformation matrix, and is impossible
for a zero-scaled matrix (see [7], Chapter 15, for more details on

ray tracing).
The trick of thinly scaling objects relieves us of the computational

costs of constructing shadow volumes and intersecting them with
the shadow plane, at the expense of some generality (for instance,
our shadow widgets can “fall” only on planar surfaces). However,

this method has drawbacks. For instance, in a scene with many
objects and shadow widgets, it is important to ensure that the shadow

widgets for dtierent objects do not rdl lie in exactly the same plane,

especially if they are fully rendered. Z-buffer renderers produce
visible errors when rendering coplanar polygons. Placing shadows

of different objects in slightly dMerent planes also brings up the
issue of the order they should be in. It would make sense to place
shadows for objects closest to theprojectionplane “above” shadows
for objects further away. This method is necessary mainly for
fully rendered shadows; the order of opaque black shadows may

seem irrelevantbecause their surface details are practically invisible.
However, for pick correlation, the order may indeed be important.

The opaque version of the shadow widget is simply produced

by the above method and colored black — all of the polygons of

the original object are preserved, but their color is overwritten.
The wireframe shadows are copies of the original objects as well,
and are merely rendered differently from the original shaded model.
Fully rendered shadows are scaled negatively to invert the polygonal
copy of the original object along the scrding axis. In this negatively
scaled copy, the surface normals for polygons are scaled by the same

transformation matrix as the polygons themselves. This can have
the effect of “flattening out” the shading of the copy, thus decreasing
or eliminating any surface definition. An alternate method might not
scale the surface normals to avoid this potential problem. In either
case, the shading for a fully rendered shadow widget is computed by
the Z-buffer renderer after the shadow has been created and placed
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in the scene. Thus, a fully rendered shadow widget may not look
exactly like a reflection of the non-visible side of an object because

it is technically not a mirror image of that object.
The fully rendered shadow widgets present some complications

when used for object-to-object snapping. We determine snapping

points by intersecting rays with objects in the scene. When a user
clicks on a fully rendered shadow widget the ray-intersection algo-
rithm naturally returns information about the surface of the widget
object. Obviously, it is not the surface information of the shadow

that we want but rather that of the 3D object to which the shadow is
related. To get the surface information we want we place between

the fully rendered shadows and the 3D objects, a thinly scaled, semi-
transparent cube that intercepts rays cast from the mouse location
and “bounces” them back rdong the shadow widget’s axis of projec-
tion. This redirected ray then intersects the 3D object andretums the
surface information at this intersection point for use by the snapping

technique. However, the semitransparent cube that redirects rays is
slightly offset from the projection plane of the shadow widgets so
that it does not interfere with rendering. Consequently, from certain

angles, pick correlation for points on the shadow widgets may be
somewhat inaccurate (Figure 7).

D Viewpoint ~ Reflected ray=

\

*
~
=

b\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 1~Mirror

objectB* xObjectA
~ ~ Shadows

Floor

Figure 7: This figure demonstrates one problem with ourimplemen-
tation of pick-correlation with fully-rendered shadows. A “mirror”
object is placed between the shadows of objects A and B which in-
tercepts incoming rays from the viewpoint. In this diagram, the user
is attempting to select object B by clicking on its shadow. The floor
plane intercepts this ray and “reflects” it along its normal vector. In
this case, object A will be selected.

Shadow widgets, as we have implemented them, present effi-
ciency problems because they are exact duplicates of polygonal
objects in the scene, For each new shadow widget introduced, the
total number of polygons in the scene increases by the number of

polygons in the object being shadowed. This can quickly reduce
a system to less than interactive speed if even somewhat complex
models are being displayed. Back-face culling both the objects and
shadows can help, but only to a certain extent. Also, as mentioned
earlier, alternative geometries can be used for the shadow widgets,
since the geometry of a shadow widget need not exactly match that
of a 3D object in order for users to grasp the relationship between

them.

Another way to speed up the generation of shadows might be
to use a Z-buffer to render bitmap images of 3D objects from the
point of view of the shadow plane. These bitmaps could then be
texture-mapped onto a floor or wall plane and displayed in the
appropriate location next to the 3D objects. Unfortunately, few
practical hardware architectures are able to support this technique.

Like most interaction techniques, the shadow widgets presented
here are also somewhat view-dependent. Indeed, it can happen that

from certain viewing angles, a shadow will be displayed edge-on,
making interactive translation, rotation or scaling impossible.

5 Future Work

Our shadow widgets address a number of interaction and visual-

ization needs of threedimensional graphics applications, but they
have many possible extensions. First we would like to explore
how best to make these shadow widgets disclose their interactive
functionality to users. Also, we would like to exploit the idea that

shadow widgets can be regarded as alternative views of a scene that
are themselves embedded in the scene. Such embedded or rdtemate
views have been used in other systems, like MCC’S Mirage [24], for

visualizing slicing planes of scientific data, for drawing floor plans
of architectural projects, for displaying hierarchy trees and logical or
schematic diagrams of complex objects like electronic assemblies,

and for displaying other abstractions of a model. Placing these alter-
nate views in proximity to the actual model, as shadow widgets are
placed, may provide visual cues about relationships within the ob-
ject or between objects that are otherwise difficult to visualize. We

hope to explore some of these various uses of alternate embedded
views in our own applications.

We are also interested in studying the applicability of these tech-
niques in environments that use 6D input devices like a Polhemus
3Space Isotrack [19] or VPL DataGlove [28]. Jmmersive environ-

ments with stereoscopic displays are also an interesting avenue of
research. In such an environmen~ the shadow widgets are likely

to be useful more as constrained manipulation tools than visualiza-
tion aids because the stereoscopic display itself may be adequate to
convey spatial relationships between objects.

User studies must be performed on all of these techniques, already

implemented or proposed, to determine their actual usefulness in
real-world applications. It will also be useful to determine to what
extent geometry can be omitted before a 3D object and its shadow

no longer appear to be related to one another. Some studies have

already been done on this topic [26], but more are needed.

6 Conclusion

We have presented a technique called shadows for visualizing and

manipulating objects in tbree-dimensionrd graphics applications,

These widgets can combine a number of distinct visual representa-
tions of an object in one coherentview, and thus offer a unified envi-
ronment for visualizing the different geometric and non-geometric
properties of a model. Shadows are also useful for object manipula-
tion tasks because they provide controls for constrained transforma-
tions without obscuring the object of interest. These widgets solve

some of the problems encountered with more traditional methods
for visualization and direct manipulation of objects by integrating

multiple windows and eliminating the need for frequent camera
manipulation.
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