
Published in Proceedings of The 9th International Conference on Advanced Robotics ('99 ICAR). © 1999 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
A Layered Architecture for Lifelike Robotic Motion

Scott Snibbe, Mark Scheeff and Krisnawan Rahardja
Interval Research Corporation

1801 Page Mill Road, Building C
Palo Alto, CA 94304

{snibbe, scheeff, rahardja}@interval.com

ABSTRACT
In this paper we present an architecture for the synthesis of
realistic and emotionally expressive robotic motion. Our
work borrows heavily from the computer graphics and
classical animation communities which emphasize
perceptual realism of motion, rather than mechanical
efficiency. Principles of traditional animation, as articulated
over the last century, are algorithmically embodied in our
work, serving to create a sense of character and presence in
a robot.
Our architecture represents motion as layers of periodic
function primitives. These primitives form more complex
behaviors which are combined and sequenced by the
Motion Compositor, a module that is parameterized by
control weights determined by higher level abstractions. A
signal-processing module modifies the overall synthesized
motion, providing a complementary method for global
control of affect1.
Our layered motion architecture is currently being used to
explore the emerging field of personal robotics. In
particular, we are experimenting with emotional
communication between a physically embodied robot and
humans. We have built a small pet-like robot which we
operate via high level remote control to perform
experiments in emotional interaction.
Keywords
Personal Robotics, Motor Control, Motion Control,
Emotion, Affect, Animation, Digital Signal Processing

MOTIVATION
Our project at Interval is concerned with using real,
physical devices to portray affect. In our current work, we
have created a mobile robot that uses gesture, action and
sound to communicate with people. We are primarily
interested in understanding human reaction to this type of
creature.

1 We use the term affect as something that relates to, arises

from or deliberately influences emotions. Rosalind Picard
has articulately explored this domain as it relates to
Human-Computer interaction in her book Affective
Computing [1].

We view this work as addressing fundamental issues in
intuitive, friendly human-computer interface technologies
(HCI). In many ways, this robot is the direct opposite of
the traditional workstation paradigm of HCI: it can move
through space, it has a rich set of senses and physical
actions, and it communicates with affect instead of syntax
and is thus inherently social.
Currently, the robot is controlled at a high level by a remote
human operator who gives commands for gross orientation,
movement and emotional state. Because we are focused on
expression and the consequent responses of people, we
have emphasized fine motor control in our design. With
such a framework we can demonstrate a rich variety of
emotional states. Besides studying the dominant affective
phenomena such as “happy” and “cute” present in today’s
toys, we can make our robot appear angry, depressed,
sleepy, nervous, surprised, etc. Additionally, since we
occupy the same physical space as a person, we can test
behaviors impossible with on-screen characters – approach,
avoidance, touching, hiding, and even threatening are
possible. This richness facilitates a broad range of
responses from our human subjects.
In programming this robot's expressions and movements,
we found that no current methodologies in robotics could
give us the lifelike motion we were seeking. This paper
covers our work in developing and implementing
algorithms that resulted in the emotional character-based
movement we required.

PRIOR WORK
The majority of research in robotic motion control prior to
1985 focused on efficient path and motion planning
primarily for industrial and scientific applications. In the
area of path planning, research focused on avoiding
collisions with obstacles when navigating through space
with a mobile robot or when moving a robotic appendage
towards a given target [2]. Dynamics and kinematics
provided the two main techniques for computing robotic
movement. In forward kinematics and dynamics, the goal is
predicting the actions of a robot given impulse forces and
torques and a model of the environment. In inverse
kinematics and dynamics the forces necessary to result in a
robot following a given trajectory or reaching a given target
are computed a priori [3].

In the Computer Graphics and Animation community, both
kinematics and dynamics have been used to generate
realistic solid-body animation, referred to as Physically
Based Modeling [4]. Additionally, there have been several
interesting systems developed for the integrated control of
real-time characters. The mechanics of human motion have
been explored to successfully create directable characters
following the spirit of kinematics and dynamics research
[5].
Recently, several “bottom-up” alternatives to traditional
motion and behavior planning architectures have been
proposed. Rodney Brooks introduced the Subsumption
Architecture [6], a layered scheme for control in which
multiple semi-autonomous behaviors run simultaneously
and compete for control of the actuators. Behaviors
communicate sensory and actuator information to each
other through low-bandwidth communication channels. In
the event of conflicts, a fixed-priority arbitration scheme
determines the winner. Brooks’ robots have exhibited
emergent high-level behaviors that qualitatively exceeded
those of prior modular and structured approaches. Masahiro
Fujita of Sony has used a Subsumption Architecture to
create an autonomous pet-like robot for entertainment [7].
Ken Perlin introduced another departure from kinematics
and dynamics related to the Subsumption Architecture. His
Improv system [8,9] uses a generative approach for motion
synthesis. In similar spirit to Brooks’ work, Perlin ignores
kinematics and dynamics to produce motion from simple
primitives. Perlin’s primitive behaviors, however, are based
on continuous periodic noise functions that when combined
to drive a jointed computer graphic creature, result in
natural and smooth real-time animations. His higher level
abstractions of behavior control are not as strictly
hierarchical as Brooks’ architecture, allowing arbitrary
inter-relationships between behaviors, including
mechanisms such as lateral inhibition, mutual exclusion
(seen much earlier in the work of Ludlow [10]) and
constraint satisfaction.
Other non-traditional approaches include Blumberg’s work
on motor control and ethologically-inspired action-selection
for directable characters [11], and Karl Sims’ work on
feedback learning methods based on evolution [12].
Recent work in modifying an arbitrary motion to alter its
emotional content has had some promising results. Several
computer graphics researchers have found preliminary
success in using digital signal processing algorithms to alter
the emotional quality of sampled or generated computer
animation [13,14]. A simple observation, for example, is
that high-pass filters can make movement appear more
nervous or exaggerated and low-pass filters result in sad or
sluggish perceived behavior.
Finally, the principles of traditional animation as developed
over the last century are a major source of inspiration for
creating character and emotion in an inanimate being.
Thomas and Johnson of Disney Studios have made one of
the best reference books for understanding the techniques of

traditional animation [15]. Of the many principles, ones that
immediately stand out as lessons for the robotics
community include:
Overlapping Action. Actions overlap in space and time.
For example, while a person walks towards a door, he is
reaching for the doorknob at the same time. This term also
refers to the time lag between body parts – for example, a
character’s eyes will follow the point he is tracking much
more quickly than his head moves.
Follow Through. Actions do not come to an immediate
halt but continue on after the end-goal of the motion is
achieved, as in a baseball swing.
Anticipation. Before entering into an action, a character
will anticipate such action, giving the impression of thought
or preparation.
Arcs. Objects follow curved paths in the real world, due to
body geometry and basic physics.
Ambient Motion. Real creatures never come to a complete
stop – there is continual movement and rhythm such as
nodding, blinking, bobbing and shifting of weight.
Ease In/Ease Out. Motions begin and end with a ramp up
to speed and a slow down to a halt. It is impossible for real
creatures to make immediate and precise changes in
position or velocity.
The vast majority of modern robotics architectures
routinely violate these principles. For example, the work of
Brooks exhibits discontinuities in both motion and behavior
as layers are subsumed. It can be argued that these
principles represent the most important challenge to the
development of a life-like affective robot.

LAYERED MOTION SYNTHESIS
As we approached the problem of affective motion control,
we were heavily influenced by lessons learned from
classical animation. Ken Perlin’s work offered us the most
promising set of tools for applying the principles of
animation to an emotive robotic character. Architecturally,
our system is derived substantially from his published
accounts of creating directable computer graphics
characters with the Improv system. However, we have built
our own system from the ground up, incorporating
important additions necessary for applying motion synthesis
to a mechanical system.
The principle of layered motion synthesis is fundamentally
different from goal-directed path planning, kinematics and
dynamics. Layered motion synthesis represents a generative
model for movement based on the weighted composition of
low-level periodic functions. On the surface, a generative
system, which is not physically or mechanically based,
might seem to be inappropriate for modeling physical
behavior. However, in order to create the illusion of
intelligence and sentience, a system based on rhythmic
functions makes sound theoretical sense, since periodic
functions, or rhythms, have been both theorized and

qualitatively observed to lie at the core of animate
movement and cognition [16].
Our periodic functions are generated with statistically
controlled noise (“Perlin Noise” [17]) to mimic the
unpredictability and noisiness of animate motor control.
This approach is in stark opposition to traditional
mechanical approaches, since deliberately introducing noise
makes a mechanical system less efficient.
The synthesis process consists of the following
hierarchically arranged functional elements (Figure 1). First
Actions are constructed based on the periodic function
primitives. Each action consists of a list of individual
mappings from a periodic function to a mechanical degree
of freedom. At the next level, a Motion Compositor takes a
combination of actions and their corresponding control
weights to produce the base synthesized motion. The
Motion Signal Processing module modifies the base motion
with a digital filterbank, producing overall changes to
affect. Finally, at the topmost level, the Behavioral Control
module conducts the entire process by sending the
appropriate time varying control weights to the Motion
Compositor.
The Behavioral Control module requires a method for
changing the action weights over time to produce shifts in
the robot’s behavior. We drive our robot as a puppet with a
human operator as the behavioral engine. The operator
makes discrete changes to the robot’s state which are
integrated to compute continuously changing action
weights. In this way we are able to carry out experiments in
mediated emotive communications. The existing literature
in behavioral control is extensive and most of these
methods could be used to drive our motion synthesis
engine. Of particular interest to us is the recent work by
Kline and Blumberg on the continuous modification of
behavior weights using functional networks [18].

SOFTWARE ARCHITECTURE DESIGN
The layers of our software architecture consist of distinct
modules in a hierarchical organization. The details of each
layer are described below, from the lowest to the highest
level of abstraction.

MOTOR CONTROL
The lowest level of our system consists of a mechanism for
delivering motion commands to a mechanical robot with
multiple degrees of freedom (DOF). This layer handles the
real-time delivery of target values to the mechanical
degrees of freedom, computation of derivatives for smooth
motion, calibration, error correction, time keeping and other
utilities.
At this software layer, mechanical degrees of freedom can
be registered as either absolute or relative. Absolute
degrees of freedom, such as a neck angle or eyebrow
position treat the incoming values as position targets.
Relative degrees of freedom, such as wheels, treat the
incoming target values as velocities.
The target values are queued in a small cache to compute
numerical first and higher order derivatives – required
signals that ensure smooth motor movements.

PERIODIC FUNCTION GENERATORS
The functions out of which all motions are synthesized
consist of three simple primitives, all of which provide
values between 0 and 1 inclusive. The Raised Sine and
Cosine functions are normalized sine and cosine values with
a period of one:

2

)2sin(1
)rsin(

πt
t

+
=

In each of these functions, t refers to the real-time clock in
units of seconds. The Noise function is similarly a
continuous periodic function with zero-crossings at integral
values of t. However, the maximum value and derivative
between crossings varies smoothly and randomly (Figure
2). There are many ways of generating such noise functions.
We chose a fast method which involves caching gradients
to a Hermite spline at each zero crossing, then computing
Hermite spline values for particular values of t on the fly.
Several tables of gradients can be pre-computed to provide
an assortment of smooth noise from which to choose.
From these primitives, other simple functions can be
constructed. As an example, consider a function which can

Motion Compositor

weight0
weight1

…
weightn

action0
action1

…
actionn

Motor Control Motors

Behavior
Control

Periodic Functions

Noise →DOF
Noise →DOF

…

Noise →DOF
Noise →DOF

…

Noise →DOF
Noise →DOF

…

Motion Signal Processing

Figure 1. Motion synthesis architecture
overview. The Motion Compositor serves as the
engine for motion synthesis. The primitives of
motion consist of actions, which in turn consist of
a series of mappings from periodic functions to
degrees of freedom. The top-level Behavior
Control module continuously varies a set of
weights, which combine with actions in the
Motion Compositor to generate target values for
the degrees of freedom. A Motion Signal
processing layer can add final overall changes to
affect before the values are sent to the Motor
Control layer which delivers actual signals to the
motors of the robot.

be used for blinking eyes. We call this function Random
Triggered Sine and it can be expressed algorithmically as
follows:
function rTrigSin(t)

if (NOT blinking AND random value > trigger
threshold AND time since last blink > minimum
time between blinks)

then
blinking = TRUE
startTime = t

else if (t-startTime > 1)
blinking = FALSE

if (blinking)
return rsin(t-startTime)

else
return 1.0

The output of this and the other periodic functions is used
to interpolate between high and low joint values in each
action.

ACTION REPRESENTATION
Actions consist of a list of mappings from periodic
functions to degrees of freedom. An action consists of high
and low values for a joint combined with a standard or
custom function based on the periodic primitives, which is
used to interpolate between the two extreme values. An
action need not involve all degrees of freedom and most
only use a subset. An action can be succinctly describes as a
short list:
(DOF, LOW VALUE, HIGH VALUE, FUNCTION)

As an example, consider our NEUTRAL action:
(NECK, 0.6, 0.7, NOISE2)

(EYEBROW, 0.8, 0.85, NOISE1)

(UPPERLIP, 0.4, 0.5, NOISE3)

(LOWERLIP, 0.4, 0.5, NOISE3)

The various noise functions NOISE1, NOISE2 and NOISE3
represent different cached sets of coherent noise to avoid
undesired perceptual coupling between mechanical degrees
of freedom.

MOTION COMPOSITOR
The Motion Compositor takes a list of actions and a set of
control weights and computes joint angles and motor

velocities at each temporal frame. These values are then
delivered to the robot via the Motor Control layer. Actions
are composited using two techniques. The first is a channel
mask. Unused degrees of freedom (channels) in a particular
action are not averaged into the final composite motion,
unduly influencing other Actions’ effects. Instead, the
unused channels are selectively masked out, so that only
those channels with a defined mapping are averaged into
the final signal. This technique is analogous to the process
of visual masking familiar to users of Adobe Photoshop™
and other digital compositing tools for images where parts
of an image are selectively allowed to show through using a
visual mask. The second technique is the method for
summing channel values. A convex sum is computed, where
final joint values are computed by dividing the sum
contribution of values for each particular degree of freedom
by the sum of the weights for that degree of freedom. At a
given instant in time, the value of a particular joint j can be
expressed as:

∑ ×

∑ ××

i ijWeightijMask
i ijActionijWeightijMask

Where iAction refers to the vector],,[21 nvvv of target

joint values generated by action i for joint j and iMask is a
vector whose components have a value of 1 for a joint used
by this action and 0 otherwise. This combination results in a
simple and scalable technique for mediating multiple and
changing numbers of actions, varying weights of actions
and actions influencing only particular parts of the robot’s
body.
When actions are registered with the Motion Compositor,
they are given a tempo which is a multiplier for the base
frequency of the periodic functions. In order for actions to
blend smoothly into the final composited motion, tempo
matching is used to gradually warp from the time of the
action to the time of the master real-time clock so that
phases of actions always match.

MOTION SIGNAL PROCESSING
A post-processing layer above the compositor allows us to
experiment with overall changes to affect. We have
currently implemented a bandpass filter as described by
Bruderlin and Williams [13]. This allows us to set positive
or negative gains on seven frequency bands, resulting in
overall changes to affect. As predicted, accentuating high
frequencies results in nervous, anxious behavior.
Accentuating low frequencies results in a more lugubrious
or relaxed perceived motion.
One problem with motion signal processing is that we must
introduce a small delay into the output signal in order to
compute our digitally filtered output. In our current case
this window is 5 samples, which introduces a significant
delay of 170ms. However, we get around this problem by
using predictive methods to compute ahead. Since all of our
periodic functions are explicit functions of time, we can

Figure 2. Periodic noise function. Our basic periodic
noise primitive has zero crossings at integer values with
smoothly varying randomness in derivative and
amplitude.

compute future values using either the current action
weights, or extrapolations to future weights using a
technique such as Kalman filtering. Thus we can remove all
of the delay and perform our signal processing on the
predicted sample values.

BEHAVIORAL CONTROL
This is the topmost layer as well as the highest abstraction
level of our motion synthesis engine. This layer sends
control weights to the Motion Compositor and Motion
Signal Processing layers to trigger the different motion
behaviors. In a typical application, this layer has a set of 20-
30 actions from which 3-6 actions typically have non-zero
weights at any given time. A behavior is defined as set of
concurrent actions and their weights, for example:

{[RANDOMBLINK, 0.05],

[NEUTRAL BODY, 0.05],

[NEUTRAL HEAD, 0.05],

[HAPPY FACE, 1.0],

[PIGEON WALK, 1.0]}

Actions with low weights are ones which can be easily
suppressed by heavier-weighted actions.
Our research to date has focused on driving the robot’s
behavior with medium-level control over emotion and
movement. Essential to our solution is the smooth varying
of weights over time to produce smooth behavioral
transitions. We have adapted Ken Perlin’s method of
integrating weights to change discrete commands into
continuously varying signals. Our particular method is to
introduce desired weight targets at discrete temporal
intervals which are gradually integrated into the actual
Action weights using an exponential filter (Figure 3). This
guarantees continuity of position and velocity and enhances
the sense of perceived character by avoiding abrupt
transitions.
Perlin has also observed that simple suppression of actions
via higher weight values does not work for more complex
sets of behaviors, which we have also verified in our initial
experiments. This occurs because multiple actions begin to

compete for the same DOF, with their average contribution
resulting in nonsensical movements. In such cases, we have
considered several approaches towards mediating
competing behaviors:
Lateral inhibition. We borrow this common technique
from neural network research. As the weight for one
behavior rises, it inhibits the rise of the weight for a second
behavior. E.g. the happy behavior suppresses the sad
behavior, since these two cannot sensibly co-exist at once.
Functional feedback and feed-forward systems.
Feedback and feed-forward systems can be used to create
complex and naturalistic transitions, even chaotic non-
repeating systems of behavior. Recent promising work in
this domain comes from the Synthetic Characters Group at
MIT where all behavior is boiled down to continuously
changing real numbers which represent drives, emotions
and actions [18]. By using a strictly numerical approach,
functional networks are constructed from accumulators,
sensors and transducers to create a sophisticated interplay
between internal motivation and external action.
Subsumption Architectures. As in Rodney Brooks’ work,
finite-state-automata can be used for making discrete
changes to desired state. Coming even closer to his work,
competing finite-state-automata could communicate using
the current action weights as the “model” corresponding
directly to the robot’s behavior and blurring the
program/data distinction.
To date, we have only experimented with the first two
techniques (lateral inhibition and feedback/feed-forward) in
our research.

Weight
target

Action
weight

Figure 3. Integrating weight targets. Discrete weight
target values are integrated using an exponential filter to
compute continuously changing action weights.

IMPLEMENTATION DETAILS

ROBOT DESIGN
Our robot is a mobile platform with all of its sensing,
actuating and computing resources on-board. The robot has
a Pentium 200 PC/104 stack with cards for networking,
sound production and power regulation. Attached to the
stack are three Motion Engineering 104/DSP motion
control cards. These control cards, together with custom
amplifiers built here at Interval, give us 10 channels of
motion control on the robot.
The first four degrees of freedom are dedicated to facial
expression (Figure 4a). The eyebrows move together and
are capable of portraying an emotional range from surprise
to extreme anger. The eyelids are similarly a single DOF
and allow blinking but not winking. Each lip has a single
DOF. The lips can bend in both directions, allowing us to
make, for instance, a true frown or a thin smile.
The remaining six degrees of freedom are dedicated to
larger, “whole body” motions (Figure 4b). There are two

degrees of freedom in the head that allow for 180 degrees
of yaw and 100 degrees of pitch. At the “waist,” where the
long neck meets the body, is a single degree of freedom.
By using this joint we can portray various postures such as
sitting up straight or leaning forward. Two degrees of
freedom are employed in the front of the robot, one for each
drive wheel. Finally, there is a DOF implemented in the
back to allow it rise up or flutter down in a movement
reminiscent of a cat whose back can arch in fear or
pleasure. An up-and-active state conveys fear, anger,
dominance, etc. while a gentle fluttering shows calm or
ease, like a bird ruffling its feathers. The back also serves to
amplify the posture created by the waist.

SOFTWARE INFRASTRUCTURE
Our software is implemented as a set of C++ classes
running on the QNX operating system. QNX has provided
us with a stable and robust real-time architecture for
delivering continuous control commands to our robot.
Motor control is performed by sending velocity frames at
30Hz to the motor control cards.
The software consists of the six layers as described in this
paper: Motor Control, Periodic Function Generation,
Actions, Motion Compositor, Motion Signal Processing and
Behavior Control. These layers run in two processes – a
dedicated process runs the Motor Control layer to
continuously update the motor control cards, while the
other process runs the remaining motion synthesis layers as
a single serial process.

PUPPET CONTROL OF THE ROBOT
The focus of this research has been the development of an
underlying architecture that is capable of generating subtle
and sophisticated changes to perceived emotional states.
We have not yet addressed autonomy. To enable immediate
testing of our emotive communication ideas, we arrived at
the concept of treating our robot as a puppet.

Lower Lip

Eyelid

Eyebrows

Upper lip

(a)

Back
(shown extended)

Head Pitch

1 foot

Head Yaw

"Waist"

Front W heels (2)

(b)

Figure 4. Schematic diagram of the robot. In (a) the
four facial degrees of freedom are shown: eyebrow,
eyelid, upper and lower lip. In (b) the six degrees of
freedom for the body are illustrated: head yaw and
pitch, neck, wheels and back. The scale is only
accurate for the body illustration.

Figure 5. Range of facial expressions. Clockwise from
upper left: surprise, happiness, melancholy, anger.

There are three main puppetry controls that we found to be
necessary: the robot's gaze direction, mobility controls, and
emotional states. These target motion control parameters
are sent to the Behavior Control layer, and processed such
that the human operator can tell the robot where to go and
look, but the robot performs these actions based on its
“mood.” A video game controller retrofitted with a small
microcontroller to allow RS-232 serial access turned out to
be a great match for these tasks (Figure 7).
In our pilot application, we use the left joystick to control
gaze direction, the right joystick for mobility movement of
the robot, right buttons for facial emotions, left buttons for
overall body moods and a few of the other buttons for
miscellaneous control (kill, reset, etc.) Our experiments

with this platform will be described in more detail in future
papers, however we found that having a hand-held, well-
designed controller radically altered our testing and
debugging experience, allowing us to work in the same
space as our robot and use physical memory2 for the
control.

RESULTS
We have found our system to be a robust method for
implementing complex emotionally expressive movement
of a robot’s face and body. Some images of the robot in
action can be found in Figures 5 and 6. However, to
appreciate this work, one must see the motion performed
over time. We have several movies of our robot available
for download on the World Wide Web at:
http://www.interval.com/papers/1999-033/index.html

FUTURE WORK
We are currently in the process of performing cognitive
experiments with our robot in controlled and open spaces to
test peoples’ responses to an affective robotic character.
Also planned are public excursions, to understand better the
effectiveness of mediated emotive communication with a
group.
We will continue to improve the quality of our behaviors
through handcrafting of the actions by animators. On the
physical form, we would like to explore the expressiveness
of a robot without a face, as animators have previously
indicated that emotion can be expressed purely through

2 Physical memory is the body’s ability to “remember”

kinesthetic experience or spatial arrangements, without
explicit cognition. For example, riding a bike, knowing
the controls to your car or the keyhole and doorknob to
your home, etc.

Figure 6. Our robot in action. In the top row, left to
right: afraid and inquisitive. Below: happy and angry.

Figure 7. Videogame controller. We use a retrofitted
off-the-shelf video game controller for high level control
of gaze, movement and emotion. The well-designed
physical interface allows the operator to quickly master
the capabilities of the robot.

movement even without facial cues [15]. We would like to
experiment with different body materials. In particular, we
think that a softer robot might be more appealing and
approachable, as evidenced by the success of recent robotic
plush toys available to consumers such as Microsoft
ActiMates™ Barney™ and Tiger Electronics’ Furby®.
These toys currently rely more on sound than movement for
their emotional communication. We believe our
architecture might make a strong addition to the sense of
character projected by such toys.
Most notably lacking in our research to date is autonomy.
We are looking forward to exploring the possibility of
interfacing cognitive and autonomous behavior
architectures to the current system in order to create the
illusion of sentience. The overall design of our motion
synthesis engine allows the system to be driven by any
behavioral models, including the traditional modular AI, a
Subsumption Architecture, or a canned sequence as seen in
Disney’s animatronic characters. However, we're especially
interested in models that include internal notions of drive
and emotion. We believe that these models could benefit by
showing their internal state as visible mood. This idea
seems in line with Brooks’ thinking – “use the world as
your model” can be flipped around to “use your body as
your storage of state.”

ACKNOWLEDGEMENTS
We would like to acknowledge Rob Tow, who initiated the
original robotics project at Interval and provided the
founding principles for exploring an emotionally expressive
robot. Jesse Dorogusker, John Ananny, Paul Korff, Gerald
Rogerson, Brad Niven, Dan Psomas and the rest of the
Interval Shop staff have all made strong contributions to the
robot. Jesse is also responsible for our game controller
retrofit. Finally, we would like to thank Chris Kline, an
Interval fellow from the MIT Media Laboratory’s Synthetic
Characters group, with whom we had lots of productive
discussions during his one-month stay at Interval.

REFERENCES
[1] Rosalind W. Picard. Affective Computing, MIT Press,
1997.

[2] Jean-Claude Latombe. Robot Motion Planning, Kluwer
Academic Publishers, 1991.

[3] M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Pérez,
M. Mason, Eds., Robot Motion: Planning and Control,
MIT Press, Cambridge, MA, 1982.

[4] D. Baraff and A. Witkin. Dynamic simulation of non-
penetrating flexible bodies. Computer Graphics 26(2): 303-
308, 1992.

[5] N. Badler, B. Barsky, D. Zeltzer, Making Them Move:
Mechanics, Control, and Animation of Articulated Figures,
Morgan Kaufmann Publishers, San Mateo, CA, 1991.

[6] R. Brooks. A Robust Layered Control for a Mobile
Robot, IEEE Journal of Robotics and Automation, 2(1):14-
23, 1986.

[7] M. Fujita and H. Kitano. Development of an
Autonomous Quadruped Robot for Robot Entertainment,
Autonomous Robots, 5, 7-18, 1998.

[8] K. Perlin, Real Time Responsive Animation with
Personality, IEEE Transactions on Visualization and
Computer Graphics (SIGGRAPH ’95 Proceedings), August
1995.

[9] K. Perlin, A. Goldberg. Improv: A System for Scripting
Interactive Actors in Virtual Worlds, Computer Graphics:
29(3), 1996.

[10] A. Ludlow. The Behavior of a Model Animal. Journal
of Behavior 58. 1976.

[11] B. Blumberg, T. Galyean, Multi-Level Direction of
Autonomous Creatures for Real-Time Virtual
Environments, Computer Graphics 30(3): 47-54, 1995.

[12] Sims, Karl. Evolving Virtual Creatures, Computer
Graphics (SIGGRAPH ’94 Proceedings), July 1994

[13] A. Bruderlin, L. Williams. Motion Signal Processing,
Computer Graphics: 30(3), 1995.

[14] K. Amaya, A. Bruderlin. Emotion from Motion, in
Graphics Interface '96, Proceedings, Toronto, Canada, May
1996, pp. 222-229.

[15] Frank Thomas and Ollie Johnston. The Illusion of Life:
Disney Animation. Hyperion. 1981.

[16] Thaddeus L. Bolton. Rhythm, The American Journal
of Psychology (VI. 2), Jan. 1894: 146-47.

[17] K. Perlin. An image synthesizer. Computer Graphics:
19(3), 1985, pp. 287-293.

[18] C. Kline and B. Blumberg. The Art and Science of
Synthetic Character Design. Convention of the Society for
the Study of Artificial Intelligence and the Simulation of
Behavior (AISB), Symposium on AI and Creativity in
Entertainment and Visual Art, Proceedings, Edinburgh,
Scotland, April, 1999.

	ABSTRACT
	MOTIVATION
	PRIOR WORK
	LAYERED MOTION SYNTHESIS
	SOFTWARE ARCHITECTURE DESIGN
	MOTOR CONTROL
	PERIODIC FUNCTION GENERATORS
	The output of this and the other periodic functions is used to interpolate between high and low joint values in each action.
	ACTION REPRESENTATION
	MOTION COMPOSITOR
	MOTION SIGNAL PROCESSING
	BEHAVIORAL CONTROL

	IMPLEMENTATION DETAILS
	ROBOT DESIGN
	SOFTWARE INFRASTRUCTURE
	PUPPET CONTROL OF THE ROBOT

	RESULTS
	FUTURE WORK
	ACKNOWLEDGEMENTS

